
SMART CONTRACT AUDIT

February 3rd 2023 | v.	1.0

score

95

PASS
Zokyo Security has concluded that

this smart contract passes security

qualifications to be listed on digital

asset exchanges.

Security Audit Score

1

Railgun Smart Contract Audit

This document outlines the overall security of the RAILGUN smart contracts evaluated by
the Zokyo Security team.

Technical​ ​Summary

The scope of this audit was to analyze and document the RAILGUN smart contracts
codebase for quality, security, and correctness.

There were 0 critical issues found during the audit. (See Complete Analysis)

Contract Status

low Risk

Testable Code

100% of the code is testable, which is above the industry standard of 95%.

It should be noted that this audit is not an endorsement of the reliability or effectiveness of
the contracts but rather limited to an assessment of the logic and implementation. In order
to ensure a secure contract that can withstand the Ethereum network’s fast-paced and
rapidly changing environment, we recommend that the RAILGUN contributors put in place a
bug bounty program to encourage further active analysis of the smart contracts.

100%75%50%25%0%

your average

INDUSTRY STANDARD

2

Railgun Smart Contract Audit

6Complete​ ​Analysis

14Code​ ​Coverage​ ​and​ ​Test​ ​Results​ ​for​ ​all​ files written by Zokyo Security

4Executive Summary

5Structure​ ​and​ ​Organization​ ​of​ ​the Document

3Auditing Strategy and Techniques Applied

Table of Contents

Auditing Strategy and Techniques Applied

3

Railgun Smart Contract Audit

Within the scope of this audit, the team of auditors reviewed the following contract(s):

Sender.sol

Executor.sol

The source code of the smart contract was taken from the RAILGUN repository:  
https://github.com/Railgun-Privacy/contract

Last commit: a49a82d1589426ece9f6b463c51635002f542e65

01 Due diligence in assessing the overall
code quality of the codebase.

02 Cross-comparison with other, similar
smart contracts by industry leaders.

03 Testing contracts logic against common
and uncommon attack vectors.

04 Thorough manual review of the
codebase line by line.

During the audit, Zokyo Security ensured that the contract:

Implements and adheres to the existing standards appropriately and effectively;

The documentation and code comments match the logic and behavior;

Distributes tokens in a manner that matches calculations;

Follows best practices, efficiently using resources without unnecessary waste;

Uses methods safe from reentrance attacks;

Is not affected by the most resent vulnerabilities;

Meets best practices in code readability, etc.

Zokyo Security has followed best practices and industry-standard techniques to verify the
implementation of RAILGUN smart contracts. To do so, the code was reviewed line by line by
our smart contract developers, who documented even minor issues as they were discovered.
Part of this work includes writing a test suite using the Hardhat testing framework. In
summary, our strategies consist largely of manual collaboration between multiple team
members at each stage of the review:

4

Railgun Smart Contract Audit

Executive Summary

Contracts are well written and structured. There were no critical issues found during the

audit, but few issues with medium severity, some of low severity and informational issues

are spotted. All the mentioned findings may have an effect only in case of specific

conditions performed by the contract owner and the investors interacting with it. They are

described in detail in the “Complete Analysis” section.

The issue has minimal impact on the
contract’s ability to operate.

Low

The issue has no impact on the
contract’s ability to operate.

Informational​

The issue affects the ability of the
contract to compile or operate in a
significant way.

High

The issue affects the ability of the
contract to operate in a way that
doesn’t significantly hinder its
behavior.

Medium

The issue affects the contract in such
a way that funds may be lost,
allocated incorrectly, or otherwise
result in a significant loss.

Critical

For the ease of navigation, the following sections are arranged from the most to the least
critical ones. Issues are tagged as “Resolved” or “Unresolved” or “Acknowledged” depending
on whether they have been fixed or addressed. Acknowledged means that the issue was
sent to the RAILGUN contributors and the RAILGUN contributors are aware of it, but they
have chosen to not solved it. The issues that are tagged as “Verified” contain unclear or
suspicious functionality that either needs explanation from the Client or remains disregarded
by the Client. Furthermore, the severity of each issue is written as assessed by the risk of
exploitation or other unexpected or otherwise unsafe behavior:

Structure​ ​and​ ​Organization​ ​of​ ​the Document

5

Railgun Smart Contract Audit

Complete Analysis

System overview

6

Railgun Smart Contract Audit

The main use case of the contracts audited by the Zokyo team is to provide governance

functionality across layers 1-2 (Ethereum-Arbitrum). Users create tasks which include one or

more actions aggregated together in layer-2 then in layer one admin enables the tasks to be

executed. In that sense, tasks are executed in layer-2 with less gas cost while the trigger is

securely being registered at layer-1 without overloading this layer with the costly
computation of
the tasks. During the manual and testing stages of the contracts audit,
multiple issues were
found. All those can be found in the following sections. Beside these
findings, there are also
remarks that have to be made about the overall security of the
contracts which are submitted for
this audit.

During the initial assessment of the contracts, it has been discovered that the admin can

perform a couple of owner related actions that can affect the ecosystem significantly. The
admin
actions include triggering the tasks and also setting the address of the executor at
layer-2. After
further inspection, the Zokyo team established that these actions constitute a
centralization risk
for the security of the contracts within the audit scope. It is also worth
mentioning that there are
minor issues present like unnecessary long revert messages,
redundant ownership transfer call,
and important return values are unused. Zokyo advises
the team to acknowledge these design
decisions and take extra care while operating the
contracts in their current design.

As for later stages, the developers informed Zokyo team that they intend to have the

contracts taken control by governance, hence this omits the risk of centralization. Other
issues
are also addressed by the developers until we pass the assessment.

Findings summary

7

Railgun Smart Contract Audit

Resolved

Acknowledged

Resolved

Resolved

Medium

Informational

Informational

Low

2

6

8

4

RiskTitle# Status

Resolved

Acknowledged

Resolved

Resolved

Medium

Low

Low

Informational

Centralization risk

Error messages are long

Return value not checked

No validation of input address

1

5

3

7

canExecute causes ambiguity

Lock solidity version

Better return uint256 taskID
created

Unnecessary
transferOwnership

Complete​ ​Analysis

Medium Resolved

Centralization risk

In Sender.sol - Admin enjoys much authority. The general theme is that admin has power to
call
several functions like setting the executorL2 and enable the execution of tasks. Some
functions
can be more highly severe to be left out controlled by one wallet more than other
functions.

Recommendation:

Apply governance methods / use multisig wallets.

Fix#1:

No message or comment from RAILGUN contributors about this, stating that multisig are
considered to be

used (this is necessary to mitigate the effect of that risk).

Fix#2:

Partner stated that contracts ownership are intended to be overtaken by governance
module. There is a centralization risk if this contract is owned by an EOA, care should be
taken to verify that the owner is the governance delegator after deployment to prevent
potential for exploits.

Medium Resolved

canExecute causes ambiguity

In Executor.sol - executeTask method executes task that result on marking
canExecute=false.
It is also the case from the perspective of layer-1 that a failed call to
Executor::readyTask after
a successful Sender::readyTask that ends up having
canExecute=false.

Recommendation:

Apply an enum instead of bool canExecute that represents 3 states of

execution

NotReady

Ready

Executed

Then apply the required checks that validate the states of execution in the relevant
methods.

8

Railgun Smart Contract Audit

9

Railgun Smart Contract Audit

Low

Return value not checked

In Sender.sol - In body of readyTask there is unchecked return value of an external
interaction

Also, in Executor.sol - In body of redeem(uint256) there is unchecked return value of an
external
interaction that should return bytes32.

Recommendation:

check the returned unit of createRetryableTicket, apply needed validation
on that
returned value. Also, same with the returned bytes32 of redeem(uint256) or pass the

returned value to the caller.

Fix:

Methods are returning those returned values

10

Railgun Smart Contract Audit

Low

Unnecessary transferOwnership

In Sender.sol - In body of constructor, transferring ownership to msg.sender is already
carried out
by base contract's Ownable constructor.

Low

Error messages are long

In Executor.sol - Error messages in the two require statements are long and considered
costly in
terms of gas.

Recommendation:

remove that line of code.

Recommendation:

● Write shorter error messages

● Use custom errors which is the goto choice for developers since solidity v0.8.4 details
about
this shown here: soliditylang.

Fix#1 :

No fix to address this, there exist more occurrences of long revert messages in Executor.sol.

And one occurrence in Sender.sol.

11

Railgun Smart Contract Audit

Informational Acknowledged

Lock solidity version

All contracts, Lock the pragma to a specific version, since not all the EVM compiler versions
support
all the features, especially the latest ones which are kind of beta versions, So the
intended behavior
written in code might not be executed as expected. Locking the pragma
helps ensure that contracts
do not accidentally get deployed using, for example, the latest
compiler, which may have higher risks
of undiscovered bugs.

Recommendation:

fix version to 0.8.17 (the version stated in hardhat.config.ts)

Fix#1:.

No change occurred to fix this. Recommendation is to remove the caret to fix the compiler
to
a specified version.

Informational Resolved

No validation of input address

In Sender.sol - setExecutor(address) does not validate the input to ensure it is non-zero.

Recommendation:

 add require statement to ensure input address is not equal to address(0).

Fix:

Method setExecutorL2 is now validating the input address.

12

Railgun Smart Contract Audit

Informational Resolved

Better return uint256 taskID created

In Executor.sol - createTask does create a new task and emit an event showing info about
the
task id just created to be referenced later. This might be tiresome for contracts, calling
this method
createTask to try and deduce the taskID . Contract using that method can
know the id by
knowing the length of tasks, but this is not straightforward and obvious.

Recommendation:

Have the method createTask return the taskID at the end of the method
call.

PassPassAccess Management Hierarchy

PassArithmetic Over/Under Flows Pass

Executor.sol Sender.sol

PassPassDelegatecall

Pass PassHidden Malicious Code

PassPassUnchecked CALL
Return Values

PassPassExternal Contract Referencing

PassPassGeneral Denial Of Service (DOS)

PassPassFloating Points and Precision

PassPassSignatures Replay

PassPass
Pool Asset Security (backdoors in the
underlying ERC-20)

PassPassRe-entrancy

PassPassUnexpected Ether

PassPassDefault Public Visibility

PassPassEntropy Illusion (Lack of Randomness)

PassPassShort Address/ Parameter Attack

PassPassRace Conditions / Front Running

PassPassUninitialized Storage Pointers

PassPassTx.Origin Authentication

13

Railgun Smart Contract Audit

Test Arbitrum executor
✓ should create tasks
✓ should mark tasks as executable
✓ Call redeem function
✓ Should allow ready task be callable by L1 sender
✓ should check for timeout values
✓ should test for failed tasks

Test Sender

✓ Should send ready task message

Test Sender Owner

✓ Should allow only owner to call setExecutorL2
✓ Should not allow non-owner to call

9 passing (4s)

As a part of our work assisting RAILGUN in verifying the correctness of their contracts code,
our team was responsible for writing integration tests using the Hardhat testing framework.

The tests were based on the functionality of the code, as well as a review of the RAILGUN
contracts requirements for details about issuance amounts and how the system handles
these.

Tests written by Zokyo Security

Code​ ​Coverage​ ​and​ ​Test​ ​Results​ ​for​ ​all​ files

14

Railgun Smart Contract Audit

Executor.sol 100

100

100

100

100 100

100 100

FILE % STMTS % BRANCH % FUNCS % Lines %
Uncovered Lines

Sender.sol

All files 100 100 100100

We are grateful for the opportunity to work with the
.

The statements made in this document should not be interpreted
as an investment or legal advice, nor should its authors be held
accountable for the decisions made based on them.

Zokyo Security recommends the put in place a
bug bounty program to encourage further analysis of the smart
contract by third parties.

RAILGUN
contributors

RAILGUN contributors

