
Delivery: March 29, 2022 and August 29, 2022



Table Of Contents

Executive Summary 2
Summary of Findings 3

Unused variables in joinsplit.circom 3
Missing `nullifierCheck.random` assignment in joinsplit.circom 3
Simplification of `PublicInputHash.circom` is possible 3
SetVotingKey in Voting.sol can be set by anyone 4
CallVote in Voting.sol can be called by anyone 5
ExecuteProposal in Voting.sol can be called by anyone 5
Votes can be front-run 5

Executive Summary

Railgun is a privacy protocol that aims to provide Ethereum users with a cheap way to
make private transfers and swaps. HashCloak had been engaged by Railgun to look at
its v2 circuits and at its voting and treasury Solidity smart contracts. From March 22,
2022 to March 29, 2022, the HashCloak team reviewed the Railgun v2 circuits. From
August 22, 2022 to August 29, 2022, HashCloak reviewed the Voting.sol and



Treasury.sol contracts. The review was done over 2 person weeks with 1 auditor. The
scope of the audit was the following :

● https://github.com/Railgun-Privacy/circuits-v2/tree/main/src at commit
67cd4ce7f49afd1dfae67c8e2d59ddf87ec3de43

● https://github.com/Railgun-Privacy/contract/blob/main/contracts/treasury/Gover
norRewards.sol and
https://github.com/Railgun-Privacy/contract/blob/main/contracts/governance/V
oting.sol at commit b74eeb69ca2614212c8060a3460fd05c28bb17e3

We found 7 issues which range from High to informational. The Railgun team has
promptly resolved all the issues found during the security review.

Severity Number of Findings

Critical 0

High 3

Medium 0

Low 1

Informational 3

https://github.com/Railgun-Privacy/circuits-v2/tree/main/src
https://github.com/Railgun-Privacy/circuits-v2/commit/67cd4ce7f49afd1dfae67c8e2d59ddf87ec3de43
https://github.com/Railgun-Privacy/contract/blob/main/contracts/treasury/GovernorRewards.sol
https://github.com/Railgun-Privacy/contract/blob/main/contracts/treasury/GovernorRewards.sol
https://github.com/Railgun-Privacy/contract/blob/main/contracts/governance/Voting.sol
https://github.com/Railgun-Privacy/contract/blob/main/contracts/governance/Voting.sol
https://github.com/Railgun-Privacy/contract/commit/b74eeb69ca2614212c8060a3460fd05c28bb17e3


Summary of Findings

Unused variables in joinsplit.circom
On lines 64 and 68 both have unused variables that are not used within
joinsplit.circom. Instead the corresponding variables have been refactored into
public-input-hash.circom

Missing `nullifierCheck.random` assignment in joinsplit.circom
On line 84 , a nullifierCheck component is initialized but the random input signal is not set.
The following snippet rectifies this by setting the random input signal:

Simplification of `PublicInputHash.circom` is possible

The circuit PublicInputHash.circom can be simplified as follows:

https://github.com/Railgun-Privacy/circuits-v2/blob/main/src/library/joinsplit.circom#L64
https://github.com/Railgun-Privacy/circuits-v2/blob/main/src/library/joinsplit.circom#L68
https://github.com/Railgun-Privacy/circuits-v2/blob/main/src/library/joinsplit.circom#L84


SetVotingKey in Voting.sol can be set by anyone

`SetVotingKey` in Voting.sol is meant to add a voting key to the Voting contract in order
to allow anyone with a voting key to participate in governance. However, in its current
implementation, anyone can add their own voting key. Hence, a malicious entity can
create many fake sybil voting keys in order to pass/reject any proposal they want.
*Recommendation*: Limit who can call the `SetVotingKey` function to an admin or
those that have staked in Railgun.

CallVote in Voting.sol can be called by anyone

`CallVote` sets in motion the voting period for a proposal. However, currently, anyone
can call `CallVote` at any time that they want. Combined with the previous issue, a
malicious entity can pass through proposals as quickly as they want.
*Recommendation*: Limit who can call the `CallVote` function to an admin

ExecuteProposal in Voting.sol can be called by anyone

`executeProposal` executes a proposal once it has been voted on. However, anyone
can call this function. Combined with the previous two issues, a malicious entity can
execute any proposal they want
*Recommendation*: Limit who can call the `executeProposal` to an admin.

Votes can be front-run

Votes are all publicly executed on Ethereum. As such, front-runners can front-run these
votes as they see fit.
*Recommendation*: Employ a commit-reveal scheme in order to minimize the
possibility of votes being front-ran.


